

e study of anatomy, viscera (sg.: viscus) refers to the internal organs of the abdominal, thoracic, and pelvic cavities. The abdominal organs may be classified as solid organs or hollow organs. The solid organs are the liver, pancreas, spleen, kidneys, and adrenal glands. The hollow organs of the abdomen are the stomach, intestines, gallbladder, bladder, and rectum. In the thoracic cavity, the heart is a hollow, muscular organ. Splanchnology is the study of the viscera. The term "visceral" is contrasted with the term "parietal", meaning "of or relating to the wall of a body part, organ or cavity". The two terms are often used in describing a membrane or piece of connective tissue, referring to the opposing sides. Origin and evolution Relationship of major animal lineages with indication of how long ago these animals shared a common ancestor. On the left, important organs are shown, which allows us to determine how long ago these may have evolved. The organ level of organisation in animals can be first detected in flatworms and the more derived phyla, i.e. the bilaterians. The less-advanced taxa (i.e. Placozoa, Porifera, Ctenophora and Cnidaria) do not show unification of their tissues into organs. More complex animals are composed of different organs, which have evolved over time. For example, the liver and heart evolved in the chordates about 550–500 million years ago, while the gut and brain are even more ancient, arising in the ancestor of vertebrates, insects, molluscs, and worms about 700–650 million years ago. Given the ancient origin of most vertebrate organs, researchers have looked for model systems, where organs have evolved more recently, and ideally have evolved multiple times independently. An outstanding model for this kind of research is the placenta, which has evolved more than 100 times independently in vertebrates, has evolved relatively recently in some lineages, and exists in intermediate forms in extant taxa. Studies on the evolution of the placenta have identified a variety of genetic and physiological processes that contribute to the origin and evolution of organs, these include the re-purposing of existing animal tissues, the acquisition of new functional properties by these tissues, and novel interactions of distinct tissue types.
